If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8t^2+2t-15=0
a = 8; b = 2; c = -15;
Δ = b2-4ac
Δ = 22-4·8·(-15)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-22}{2*8}=\frac{-24}{16} =-1+1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+22}{2*8}=\frac{20}{16} =1+1/4 $
| 5x+3(2x-5)-4(3x+5)=7+3(x+2) | | -2/5s=10 | | (-4y+5)+(2y+8)=NY+13 | | 1/2x+8=8 | | a=1/2(91) | | 6,5x+0,1=1,4 | | 3/7=5/x | | 2(x+6)+(-x+5=-8 | | (x+5)(5x+2)=-16 | | (2y+3)+(5y-1)=NY+2 | | 5(-3x-7)+4(9-2x)=-22 | | 4(3n+7)=112 | | 17x-1=6x-3 | | 0=6x^2+12x | | 3/8x+15/2=18 | | (x*x)-7x-10=0 | | |2-1/3x=6 | | 15.3=x | | 5(-3x)=15 | | (4x+10)=16 | | (4x+10=16 | | 4.93=Xx.12 | | 0.25+35x=63.75 | | (4x-6)-2x=(x-6)+24 | | -1=5(x–6)-4(2–3x) | | (2x-1)^2=-49 | | Xx.12=4.93 | | (14y+12)+(6y-4)=2NY+8 | | 7x+2(2x-15)=14 | | 4x-3(2x-12)=24 | | 6(x-4)=-60 | | 16+2.c=22.5 |